Abundance of Cutlassfish *Trichiurus lepturus* (Linnaeus, 1758) in Bushehr Waters, Persian Gulf

H. Raeisi¹*, S. A Hosseini¹, S.Y. Paighambari¹ and R. Davoodi²

¹Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Iran.

²Persian Gulf University, PLEASE WRITE COMPLETE ADDRESS

Received xxth x 20xx
Accepted xxst x 20xx
Online Ready xth x 20xx

ABSTRACT

The abundance of cutlass fish was studied in the fishing grounds of Bushehr waters between May to August 2010. Stratified random sampling scheme from 40 trawl stations was used. Catch rates (catch per unit area, CPUA) and total biomass of all the samples were estimated. Mean CPUA and the total biomass of *T. lepturus* were estimated as 6104.6 ± 956.4 kg.nm-2 and 3765.9 tonnes respectively. There was a significant difference between the mean CPUA of different depths and seasons. This study has provided the first study of biomass and CPUA in Bushehr Waters. The data collected in this study can be used as the basis for a long-term stock monitoring program in the region.

Keywords: Swept area; CPUA; *Trichiurus lepturus*; bushehr; persian gulf.

1. INTRODUCTION

Persian Gulf is in the subtropical zone, lying almost completely between the latitudes 24° and 30°N and longitudes of 48° and 52°30'E (Fig. 1). Maximum depth of the Persian Gulf is 100m, with an average 36m depth and most of the basin is less than 60m depth (Carpenter et al., 1997; Reynolds 1993; Kampf and Sadrinasab, 2006).

Corresponding author: Email: hadiraeici@yahoo.com;
The largehead cutlassfish, *Trichiurus lepturus*, is a benthic-pelagic species occurring along continental shores and islands in tropical and temperate seas, mainly between 45°S and 60°N (Randall, 1995; Nakamura and Parin, 1993). It is a coastal species fished in warm and warm-temperate waters around the world (Raeisi et al., 2011) with a nominal worldwide catch of 1345911 tonnes in 2009 (FAO, 2009).

Cutlassfish are voracious predators (Martins and Haimovici, 1996; Bitter and Benneditto, 2009) reported dramatically in the Indian Ocean, particularly Persian Gulf. The most abundant species of Cutlassfish in the Persian Gulf is *T. lepturus*. The cutlassfish fisheries of the Persian Gulf are the most lucrative fisheries in the recent years (Raeisi et al., 2011). Large concentrations of this species has been associated with low catches of important commercial shrimps, such as *Penaeus semisulcatus*, *Metapenaeus stebbingi*, and *Metapenaeus affinis*, by southern Iranian fisherman which suggesting that Cutlassfish has a significant impact on the stock of shrimps (Raeisi et al., 2011).

Some research has been conducted to investigate the effect of environmental conditions on the distribution of this species (Lee, 1979, Balk and Park, 1986; Dekun and Cungen, 1987;
Munekiyo, 1990, Martins and Haimovici, 1996; Raeisi et al., 2011; Meriem et al., 2011) which indicate the abundant of this species in subtropical zone.

Despite the existence of studies about some aspect of cutlassfish population from the Persian Gulf, available information about the abundance and distribution are very dispersed and slight. This article presents the first quantitative data on CPUA and catch per unit effort of cutlassfish in the fishing grounds of Bushehr waters of Persian Gulf.

2. MATERIALS AND METHODS

2.1 Study Area and Sampling Stations

Data were collected on monthly basis during 1st May 2010 to 10 August 2010 of fishing grounds of *Trichiurus lepturus* in Bushehr province (SW of the Persian Gulf). The survey areas were restricted to Iranian waters between the longitudes of 50° 00′ to 52° 20′ E and covers fishing grounds of *Trichiurus lepturus* (Fig. 1). The total area was calculated with a planimeter. A total of 40 trawl stations were selected following a stratified random procedure.

2.2 Sampling

The cruises were carried out using Commercial vessel *Kish 811* that is a stern trawler (43.5 m length, 450 kW) equipped with a Global Positioning System (GPS), echo sounders and a bottom-trawl net with a cod-end mesh size of 75mm and a 45m headline. Trawl duration ranged from 1.5 to 4h (mean 3.26 ± 0.14) at speed of about 3 ± 0.55 knots (depending on weather and/or bottom conditions). During the sampling, duration of trawling, GPS position, towing distance and towing speed were recorded.

The end of each hauling, total catch emptied on the deck then bycatch were separated from the target species (cutlassfish). Target species was spilling to trays then weighed and counted. The biomass and CPUA were estimated based on Sparre and Venema (1992). The towing distance at a given station (D in nautical miles, n.m.) was measured by GPS or using the formula:

\[D = 60 \times \sqrt{(Lat_1 - Lat_2)^2 + (Lon_1 - Lon_2)^2 \cos^2(0.5(Lat_1 + Lat_2))} \]

where:

- Lat1 = latitude at start of haul (degrees).
- Lat2 = latitude at end of haul (degrees).
- Lon1 = longitude at start of haul (degrees).
- Lon2 = longitude at end of haul (degrees).

Swept area \((a, \text{n.m.}^2)\) at each station was then estimated as:

\[a_j = D \times h \times x^2 \]

where \(h\) is the length of the head-rope and \(D\) is the cover of distance. \(X^2\) wing spread coefficient = 0.66 (Valinasab et al., 2006).
The catch per unit area (CPUA, kg n.m.\(^{-2}\)) for each station is given by:

\[
CPUA_i = \frac{C_w}{a} \text{kg/nm}^2
\]

where \(C_w\) = catch in weight of a haul and \(a\) = swept area (n.m.\(^2\)) for each haul.

The total biomass estimated as:

\[
\overline{CPUA} = \sum \frac{CPUA_i}{N}
\]

\[
B = \frac{\overline{CPUA}}{0.5} \times A
\]

where \(A\)=total area \(N\)= number of stations in 0.5 = catch coefficient (using the value proposed by Sparre and Venema, 1992, for demersal group in tropical and subtropical areas).

2.3 Data Analysis

Two-factor analysis of variance (ANOVA) was used to assess the mean differences of CPUA between seasons and depths. Shapiro–Wilk’s and Levene tests were used to analyze normality of the data and homogeneity of variances, respectively (Zar, 1999). To compare the means, Duncan’s new multiple range test was used. For normality data and homogeneity variance, data were transformed by \(\log_{10}(x+1)\).

Kolmogorov–Smirnov tests were used to determine whether the size composition of individual \(T.\ lepturus\) was significantly differed between seasons and depth. Because this is a pair-wise comparison, interactions between season and depth were not considered.

3. RESULTS

The mean catch per unit area and biomass values for \(T.\ lepturus\) is given in Table 1.

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>Season</th>
<th>Depth</th>
<th>CPUA (kg n.m.(^{-2}))</th>
<th>S.E</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Spring</td>
<td>>50</td>
<td>2064.86</td>
<td>457.3</td>
<td>1438.32</td>
<td>2955.17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Spring</td>
<td>50-60</td>
<td>6521</td>
<td>1152.21</td>
<td>4223.66</td>
<td>7826.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spring</td>
<td>60-70</td>
<td>16948.47</td>
<td>2045.96</td>
<td>13975.35</td>
<td>20869.86</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Summer</td>
<td>>50</td>
<td>2071.42</td>
<td>166.03</td>
<td>1852.25</td>
<td>2397.05</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Summer</td>
<td>60-70</td>
<td>5400.64</td>
<td>978.65</td>
<td>1609.96</td>
<td>13022.79</td>
<td></td>
</tr>
</tbody>
</table>

Mean CPUA and total Biomass for \(T.\ lepturus\) in the fishing grounds of Bushehr; S.E: standard error; Min: minimum, Max: maximum
3.1 Seasonal Trend

The Mean CPUA values (F = 19.77; P<0.05) differed significantly between seasons with higher catches in spring (Fig. 2).

Length–frequency distribution of the *T. lepturus* was differed significantly between the examined seasons for seasonal variation in the size structure of their populations. Kolmogorov–Smirnov tests showed that *T. lepturus* had significantly higher proportions of smaller individuals during summer (Fig. 3).

Fig. 2. Percentage of length–frequency distributions of *T. lepturus* caught in the spring (white bars) and summer (black bars) fishing seasons. PLEASE WRITE THE x AXIS PARAMETER
Fig. 3. Percentage of length–frequency distributions of *T. lepturus* caught in the <50 depth (white bars), 50-60m depth (gray bar) and 60-70m depth (black bars). PLEASE WRITE THE x AXIS PARAMETER

3.2 Depth Trends

The mean CPUA values were between depths, with minimum CPUA ($F = 26.21; P<0.05$) in >50m depth. The mean CPUA did not differ significantly between depths of 50 to 60 and 60 to 70 m ($P>0.05$) (table 2).

The size composition of the *T. lepturus* differed significantly between different depths. Smaller individuals of *T. lepturus* was caught in >50m depth (Fig 3).

3.3 Diel Trends

There was a significant difference in the mean CPUA of depths in combination with season ($F = 10.61; P<0.05$) (Table 2).

Table 2. Summary of the two-factor fixed ANOVAs for CPUA of *T. lepturus* in the Persian Gulf; testing for differences between seasons and depth.

<table>
<thead>
<tr>
<th>Species</th>
<th>Season(1)</th>
<th>Depth(2)</th>
<th>Season × depth (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichiurus lepturus</td>
<td>19.77***</td>
<td>26.21***</td>
<td>10.61***</td>
</tr>
</tbody>
</table>

4. DISCUSSION

The total biomass of *T. lepturus* from the fishing grounds of Bushehr waters was estimated to 3765.9 tonnes. In the previous reports from Oman Sea, the total biomass of *T. lepturus* was estimated to 1430 tonnes (Shojaei and Taghavi, 2011). The difference in the total biomass can also be explained by the restrictions imposed by the Iranian fisheries organization for limiting the number of trawls, fishing gears in the Persian Gulf.

We conducted our surveys during the periods May to August but other studies (Valinassab et al., 2005; Shojaei and Taghavi, 2011) were conducted during in December and August to October respectively.

Also, bottom fish trawling previously was used but it is banned in this region since 1992 (Nia-Meimandi and Khorshidian, 1993; Valinasab, 2006) to prevent over-exploitation which has helped the recovery of fish resources. Also In previous investigations (Valinassab et al., 2005) survey was performed using the R.V.Ferdows11 (45.5 m, 1200 kW), which was equipped with a bottom trawl net with a mesh size of 80 mm in the cod-end and a 72 m headline but we conducted our surveys with an improved design with a cod-end mesh size of 75 mm and a 45 m headline.

Our results show that season and depth are important determinants of the CPUA rate and the size composition of *T. lepturus*. The variation of CPUA between shallow and deep water indicates differences in the horizontal distribution of the species. The horizontal distribution of a species can depend on the density of the population and so may change between seasons (Maccall, 1990; Swain and Wade, 1993; Petrakis et al., 2001).
Additionally, differences in the size composition of the catch have also been observed between spring and summer catches (Beamish, 1966; Walsh, 1988; Engas and Soldal, 1992), which suggest recruitment is seasonal. For many demersal fish, a positive correlation between size of fish and depth has been reported (Macpherson and Duarte, 1991; Sinclair, 1992; Swain, 1993; Petrakis et al., 2001).

5. CONCLUSION

Due to short duration of this study, spatial variations and CPUA obtained for *T. lepturus* were not conclusive. Despite this problem, this study has provided the first study of spatial variations and CPUA of cutlass fish trawl in fishing grounds of Bushehr waters of the Persian Gulf. The collected data showed that Persian Gulf has rich cutlass fish stocks and could be use as a commercial fishery resource.

ACKNOWLEDGMENT

We sincerely thank the staff of the Bushehr institute of shrimp in particularly Kamboz Khorsedhian and Javad Shaabani and Iranian fisheries organization. Also we acknowledge Salma Dorostkari and Parviz Zare for useful help to prepare this manuscript. We are also thanks owners, skipper, and crews of the all commercial vessel in particularly Kish 813 and 811.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

illustrated catalogue of the snake mackerels, shocks, escolars, gemfishes, sack fishes, domine, ollifish, cutlassfishes, scabbardfishes, hair-tails, and frostfishes known to date. Fisheries Synopsis No. 125, Vol. 15. FAO, Rome, pp. 136.

Shojaei, M., Taghavi, A. (2011). The Catch Per Unit of Swept Area (CPUA) and Estimated Biomass of Large Head Hairtail (Trichiurus lepturus) with an Improved Trawl in the Persian Gulf and Gulf of Oman, Iran, 24, 209-217.

