Cryopreservation of Beluga (*Huso huso*) Sperm:
Effect of Different Concentrations of DMSO and Dilution Rates on Sperm Mobility and Motility Duration After Short-Term Storage

Ali Sadeghi, Mohamad Reza Imanpoor, Vahid Taghizadeh and Fardin Shaluei

Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract: Semen obtained from four Beluga males (*Huso huso*) was cryopreserved using extender; Tris-sucrose-KCl (30mM Tris, 23.4mM sucrose, 0.25mM KCl, pH 8.0) supplemented with DMSO at concentrations of 5%, 10% and 20%. Semen was diluted, respectively, with ratios of 1:0.5, 1:1 and 1:2 with extender and frozen in liquid nitrogen vapor. Frozen sperms after 3 and 15 days were excluded from freezing. Experiment showed the highest motility duration and the most motility percentage of post thawed sperms after 3 days was related to the treatments with the concentration of DMSO 10% and the dilution ratio of 1:1 (336.12±27.52s and 30.31±3.94%; P<0.05), as well as the upmost mobility and the motility duration of post thawed sperms after 15 days was related to the treatments with the concentration of DMSO 10% and the dilution ratio of 1:1 (253.32±21.52 s and 23.41±1.60%; P<0.05).

Key words: *Huso huso* %Cryopreservation %Sperm %DMSO %Motility duration %Motility percentage

INTRODUCTION

It has been estimated that semen from 200 fish species have been successfully cryopreserved [1]. However, species-specific optimizations of technology are needed. Main parameters for cryopreservation include kinds of extenders and cryoprotectants, the dilution rate, the freezing and thawing rates and kind of extender used for fertilization. The most permeating cryoprotectant for fish semen appears to be dimethyl sulfide (DMSO) and methanol (MeOH) [2].

Other cryoprotectants such as glycerol, ethylene glycol, propanediol, dimethyl acetamide and methanol are short popular or have been used with limited success. Unlike most teleost fish, information concerning reliable technology for cryopreservation of sturgeon milt is not available.

Cryopreservation success was usually measured as post-thaw sperm mobility [3, 4] or as fertilization success during primary embryo growth [5].

Sturgeon (*Acipenser sp., Chondrostei*) spermatozoa are significantly different from teleost fish sperm. These differences concern morphology (more complex structure, presence of acrosome), physiology (longer duration of mobility, acrosome reaction) and biochemistry (presence of acrosin,aryl sulfatase) [6, 7]. Other striking difference between semen properties of sturgeons and teleost fish is the low osmolality of sturgeon seminal plasma composition [8]. The objectives of our work were to test the effect of: (1) DMSO in different concentrations on the motility percentage and motility duration of Beluga sturgeon sperm; (2) several dilution rates in combination with different DMSO concentrations on the motility percentage and motility duration of Beluga sturgeon sperm.

MATERIALS AND METHODS

Sperm Collection for Cryopreservation: Semen samples were collected from eight males of Beluga (*Huso huso*) in Shahid Marjani Sturgeon Hatchery located in Gorgan, Iran in March 2012. Spermiation was induced by injecting of sturgeon with pituitary extract in dose of 2-3 mg kg\(^{-1}\) body weight [9]. Semen was collected within 16-24 h (depending on the water temperature) post hormonal injection. Semen was transferred to Aquaculture...
RESULTS

The duration of sperm of semen samples showing 80% motility or higher were used for the experiments (Table 1).

Effect of Dilution Rates with Concentrations of DMSO on Quality Post-Thawed Sperms after 3 Days: Highest motility duration and the most motility percentage of post-thawed sperms after 3 days was related to the treatments with the concentration of DMSO 10% and the dilution of 1:1 (336.12±27.52 s and 30.31±3.94%; Table 2). The least Duration and the lowest mobility of post-thawed sperms was observed in the treatments with the concentration of DMSO 20% and the dilution of 1:2 (260.67±24.48 s and 21.36±4.14%; P<0.05) Table 2.

Table 2 showed the maximum duration and the most mobility results observed in treatments where the dilution rate was 1:1, as well as the lowest motility percentage and motility duration of post-thawed sperm was observed in dilution rate 1:2.

Effect of Dilution Rates with Concentrations of DMSO on Quality Post-Thawed Sperms after 15 Days: Maximum motility duration and the upmost mobility of post-thawed sperms after 15 days was related to the treatments with the concentration of DMSO 10% and the dilution of 1:1 (253.32±21.52 s and 23.41±1.60%; Table 3).

Results show the minimum Duration and the lowest motility percentage of post-thawed sperms in the treatments with the concentration of DMSO 20% and the dilution of 1:2 (192.54±21.48 s and 15.13±1.95%; P<0.05).

Results showed the highest motility duration and the most motility percentage results in treatments where the dilution rate was 1:1, as well as minimum motility duration and the least mobility of post-thawed sperm was observed in dilution rate 1:2.

DISCUSSION

Decrease in stocks and limited number of potential breeders has led to the establishment offish sperm cryobanks which play a crucial role in the genetic management and conservation of aquatic resources [14, 15]. The establishment of semen banks from valuable fish species including sturgeon is widely practiced in multiple countries [16, 17].

According to the above results, by comparing Table 2 and 3 the dilution rates has significant differences on the duration of sperm motility (P<0.05), as most of the...
motility duration related to dilution ratio of 1:1 of the treatments significantly reduced with increasing dilution. Because of the high dilution of the sperm, plasma loses its protective effect, sperm viability reduced and the concentration of cryoprotectant increased causing toxicity resulting in reduced sperm viability [18]. The results showed that the sperm quality significantly reduced after thawing similar to the results of [19]. These researchers have reported that the quality of Ponto-Caspian sturgeon semen sharply decreased after thawing. In this experiment, post-thawed sperms with DMSO concentration of 10% and the dilution of 1:1 has the highest mobility and motility duration similar to the results of [20]. These researchers have reported that the most suitable cryoprotectant for sperm cryopreservation Italian Cobice sturgeon (*Acipenser naccarii*), is DMSO concentration of 10%. Also, [18] announced the most motility of post-thawed sperm Starlet (*Acipenser ruthenus*) was with DMSO 10% (80±7.4%).

[21] announced the maximum motility and motility duration of post-thawed sperm of pallid sturgeon (*Scaphyrinchus albus*) was with DMSO concentration of 5% (26±13%). [22] reported that the most suitable cryoprotectant for sperm Cryopreservation Chinese sturgeon (*Acipenser sinensis*), was with DMSO 12%.

The reason of difference in suitable density of cryoprotectant in written result with experiment result may be for selected species, difference in extender solution or semen is specific characteristics of this species.
CONCLUSION

From the above study it can be concluded that storage of frozen sperm has a negative impact on motility duration and motility percentage of post-thawed sperms. Results also showed that highest motility duration and motility percentage of post-thawed sperms was for treatments with the concentration of DMSO 10% and the dilution of 1:1.

REFERENCES

